图书介绍
应用反问题中的计算方法【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

- 王彦飞,(俄罗斯)亚哥拉,杨长春编著 著
- 出版社: 北京:高等教育出版社
- ISBN:7040344998
- 出版时间:2012
- 标注页数:530页
- 文件大小:113MB
- 文件页数:547页
- 主题词:反演算法-英文
PDF下载
下载说明
应用反问题中的计算方法PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ Introduction1
1 Inverse Problems of Mathematical Physics&S.I.Kabanikhin3
1.1 Introduction3
1.2 Examples of Inverse and Ill-posed Problems12
1.3 Well-posed and Ill-posed Problems24
1.4 The Tikhonov Theorem26
1.5 The Ivanov Theorem:Quasi-solution29
1.6 The Lavrentiev's Method33
1.7 The Tikhonov Regularization Method35
References44
Ⅱ Recent Advances in Regularization Theory and Methods47
2 Using Parallel Computing for Solving Multidimensional Ill-posed Problems&D.V.Lukyanenko and A.G.Yagola49
2.1 Introduction49
2.2 Using Parallel Computing51
2.2.1 Main idea of parallel computing51
2.2.2 Parallel computing limitations52
2.3 Parallelization of Multidimensional Ill-posed Problem53
2.3.1 Formulation of the problem and method of solution53
2.3.2 Finite-difference approximation of the functional and its gradient56
2.3.3 Parallelization of the minimization problem58
2.4 Some Examples of Calculations61
2.5 Conclusions63
References63
3 Regularization of Fredholm Integral Equations of the First Kind using Nystr?m Approximation&M.T Nair65
3.1 Introduction65
3.2 Nystr?m Method for Regularized Equations68
3.2.1 Nystr?m approximation of integral operators68
3.2.2 Approximation of regularized equation69
3.2.3 Solvability of approximate regularized equation70
3.2.4 Method of numerical solution73
3.3 Error Estimates74
3.3.1 Some preparatory results74
3.3.2 Error estimate with respect to ‖·‖277
3.3.3 Error estimate with respect to ‖·‖∞77
3.3.4 A modified method78
3.4 Conclusion80
References81
4 Regularization of Numerical Differentiation:Methods and Applications&T.Y.Xiao,H.Zhang and L.L.Hao83
4.1 Introduction83
4.2 Regularizing Schemes87
4.2.1 Basic settings87
4.2.2 Regularized difference method(RDM)88
4.2.3 Smoother-Based regularization(SBR)89
4.2.4 Mollifier regularization method(MRM)90
4.2.5 Tikhonov's variational regularization(TiVR)92
4.2.6 Lavrentiev regularization method(LRM)93
4.2.7 Discrete regularization method(DRM)94
4.2.8 Semi-Discrete Tikhonov regularization(SDTR)96
4.2.9 Total variation regularization(TVR)99
4.3 Numerical Comparisons102
4.4 Applied Examples105
4.4.1 Simple applied problems106
4.4.2 The inverse heat conduct problems(IHCP)107
4.4.3 The parameter estimation in new product diffusion model108
4.4.4 Parameter identification of sturm-liouville operator110
4.4.5 The numerical inversion of Abel transform112
4.4.6 The linear viscoelastic stress analysis114
4.5 Discussion and Conclusion115
References117
5 Numerical Analytic Continuation and Regularization&C.L.Fu,H.Cheng and Y.J.Ma121
5.1 Introduction121
5.2 Description of the Problems in Strip Domain and Some Assumptions124
5.2.1 Description of the problems124
5.2.2 Some assumptions125
5.2.3 The ill-posedness analysis for the Problems 5.2.1 and 5.2.2 125
5.2.4 The basic idea of the regularization for Problems 5.2.1 and 5.2.2 126
5.3 Some Regularization Methods126
5.3.1 Some methods for solving Problem 5.2.1 126
5.3.2 Some methods for solving Problem 5.2.2 133
5.4 Numerical Tests135
References140
6 An Optimal Perturbation Regularization Algorithm for Function Reconstruction and Its Applications143
6.1 Introduction143
6.2 The Optimal Perturbation Regularization Algorithm144
6.3 Numerical Simulations147
6.3.1 Inversion of time-dependent reaction coefficient147
6.3.2 Inversion of space-dependent reaction coefficient149
6.3.3 Inversion of state-dependent source term151
6.3.4 Inversion of space-dependent diffusion coefficient157
6.4 Applications159
6.4.1 Determining magnitude of pollution source159
6.4.2 Data reconstruction in an undisturbed soil-column experiment162
6.5 Conclusions165
References166
7 Filtering and Inverse Problems Solving&L.V.Zotov and V.L.Panteleev169
7.1 Introduction169
7.2 SLAE Compatibility170
7.3 Conditionality171
7.4 Pseudosolutions173
7.5 Singular Value Decomposition175
7.6 Geometry of Pseudosolution177
7.7 Inverse Problems for the Discrete Models of Observations178
7.8 The Model in Spectral Domain180
7.9 Regularization of Ill-posed Systems181
7.10 General Remarks,the Dilemma of Bias and Dispersion181
7.11 Models,Based on the Integral Equations184
7.12 Panteleev Corrective Filtering185
7.13 Philips-Tikhonov Regularization186
References194
Ⅲ Optimal Inverse Design and Optimization Methods195
8 Inverse Design of Alloys'Chemistry for Specified Thermo-Mechanical Properties by using Multi-ob jective Optimization197
8.1 Introduction198
8.2 Multi-Objective Constrained Optimization and Response Surfaces199
8.3 Summary of IOSO Algorithm201
8.4 Mathematical Formulations of Objectives and Constraints203
8.5 Determining Names of Alloying Elements and Their Concentra-tions for Specifed Properties of Alloys212
8.6 Inverse Design of Bulk Metallic Glasses214
8.7 Open Problems215
8.8 Conclusions218
References219
9 Two Approaches to Reduce the Parameter Identification Errors&Z.H.Xiang221
9.1 Introduction221
9.2 The Optimal Sensor Placement Design223
9.2.1 The well-posedness analysis of the parameter identifica-tion procedure223
9.2.2 The algorithm for optimal sensor placement design226
9.2.3 The integrated optimal sensor placement and parameter identification algorithm229
9.2.4 Examples229
9.3 The Regularization Method with the Adaptive Updating of A-priori Information233
9.3.1 Modified extended Bayesian method for parameter identification234
9.3.2 The well-posedness analysis of modified extended Bayesian method234
9.3.3 Examples236
9.4 Conclusion238
References238
10 A General Convergence Result for the BFGS Method&Y.H.Dai241
10.1 Introduction241
10.2 The BFGS Algorithm243
10.3 A General Convergence Result for the BFGS Algorithm244
10.4 Conclusion and Discussions246
References247
Ⅳ Recent Advances in Inverse Scattering249
11 Uniqueness Results for Inverse Scattering Problems&X.D.Liu and B.Zhang251
11.1 Introduction251
11.2 Uniqueness for Inhomogeneity n256
11.3 Uniqueness for Smooth Obstacles256
11.4 Uniqueness for Polygon or Polyhedra262
11.5 Uniqueness for Balls or Discs263
11.6 Uniqueness for Surfaces or Curves265
11.7 Uniqueness Results in a Layered Medium265
11.8 Open Problems272
References276
12 Shape Reconstruction of Inverse Medium Scattering for the Helmholtz Equation&G.Bao and P.J.Li283
12.1 Introduction283
12.2 Analysis of the scattering map285
12.3 Inverse medium scattering290
12.3.1 Shape reconstruction291
12.3.2 Born approximation292
12.3.3 Recursive linearization294
12.4 Numerical experiments298
12.5 Concluding remarks303
References303
Ⅴ Inverse Vibration,Data Processing and Imaging307
13 Numerical Aspects of the Calculation of Molecular Force Fields from Experimental Data&G.M.Kuramshina,I.V.Kochikov and A.V.Stepanova309
13.1 Introduction309
13.2 Molecular Force Field Models311
13.3 Formulation of Inverse Vibration Problem312
13.4 Constraints on the Values of Force Constants Based on Quantum Mechanical Calculations314
13.5 Generalized Inverse Structural Problem319
13.6 Computer Implementation321
13.7 Applications323
References327
14 Some Mathematical Problems in Biomedical Imaging&J.J.Liu and H.L.Xu331
14.1 Introduction331
14.2 Mathematical Models334
14.2.1 Forward problem334
14.2.2 Inverse problem336
14.3 Harmonic Bz Algorithm339
14.3.1 Algorithm description340
14.3.2 Convergence analysis342
14.3.3 The stable computation of △Bz344
14.4 Integral Equations Method348
14.4.1 Algorithm description348
14.4.2 Regularization and discretization352
14.5 Numerical Experiments354
References362
Ⅵ Numerical Inversion in Geosciences367
15 Numerical Methods for Solving Inverse Hyperbolic Problems&S.I.Kabanikhin and M.A.Shishlenin369
15.1 Introduction369
15.2 Gel'fand-Levitan-Krein Method370
15.2.1 The two-dimensional analogy of Gel'fand-Levitan-Krein equation374
15.2.2 N-approximation of Gel'fand-Levitan-Krein equation377
15.2.3 Numerical results and remarks379
15.3 Linearized Multidimensional Inverse Problem for the Wave Equation379
15.3.1 Problem formulation381
15.3.2 Linearization382
15.4 Modified Landweber Iteration384
15.4.1 Statement of the problem385
15.4.2 Landweber iteration387
15.4.3 Modification of algorithm388
15.4.4 Numerical results389
References390
16 Inversion Studies in Seismic Oceanography&H.B.Song,X.H.Huang,L.M.Pinheiro,Y.Song,C.Z.Dong and Y.Bai395
16.1 Introduction of Seismic Oceanography395
16.2 Thermohaline Structure Inversion398
16.2.1 Inversion method for temperature and salinity398
16.2.2 Inversion experiment of synthetic seismic data399
16.2.3 Inversion experiment of GO data(Huang et a1.,2011)402
16.3 Discussion and Conclusion406
References408
17 Image Resolution Beyond the Classical Limit&L.,Gelius411
17.1 Introduction411
17.2 Aperture and Resolution Functions412
17.3 Deconvolution Approach to Improved Resolution417
17.4 MUSIC Pseudo-Spectrum Approach to Improved Resolution424
17.5 Concluding Remarks434
References436
18 Seismic Migration and Inversion&Y.F.Wang,Z.H.Li and C.C.Yang439
18.1 Introduction439
18.2 Migration Methods:A Brief Review440
18.2.1 Kirchhoff migration440
18.2.2 Wave field extrapolation441
18.2.3 Finite difference migration in ω-X domain442
18.2.4 Phase shift migration443
18.2.5 Stolt migration443
18.2.6 Reverse time migration446
18.2.7 Gaussian beam migration447
18.2.8 Interferometric migration447
18.2.9 Ray tracing449
18.3 Seismic Migration and Inversion452
18.3.1 The forward model454
18.3.2 Migration deconvolution456
18.3.3 Regularization model457
18.3.4 Solving methods based on optimization458
18.3.5 Preconditioning462
18.3.6 Preconditioners464
18.4 Illustrative Examples465
18.4.1 Regularized migration inversion for point diffraction scatterers465
18.4.2 Comparison with the interferometric migration468
18.5 Conclusion468
References471
19 Seismic Wavefields Interpolation Based on Sparse Regularization and Compressive Sensing&Y.F.Wang,J.J.Cao,T.Sun and C.C.Yang475
19.1 Introduction475
19.2 Sparse Transforms477
19.2.1 Fourier,wavelet,Radon and ridgelet transforms477
19.2.2 The curvelet transform480
19.3 Sparse Regularizing Modeling481
19.3.1 Minimization in l0 space481
19.3.2 Minimization in l1 space481
19.3.3 Minimization in lp-lq space482
19.4 Brief Review of Previous Methods in Mathematics482
19.5 Sparse Optimization Methods485
19.5.1 l0 quasi-norm approximation method485
19.5.2 l1-norm approximation method487
19.5.3 Linear programming method489
19.5.4 Alternating direction method491
19.5.5 l1-norm constrained trust region method493
19.6 Sampling496
19.7 Numerical Experiments497
19.7.1 Reconstruction of shot gathers497
19.7.2 Field data498
19.8 Conclusion503
References503
20 Some Researches on Quantitative Remote Sensing Inversion&H.Yang509
20.1 Introduction509
20.2 Models511
20 3 A Priori Knowledge514
20.4 Optimization Algorithms516
20.5 Multi-stage Inversion Strategy520
20.6 Conclusion524
References525
Index529
热门推荐
- 509654.html
- 356392.html
- 2278284.html
- 1242039.html
- 2732079.html
- 2157136.html
- 3223345.html
- 2518490.html
- 879361.html
- 516794.html
- http://www.ickdjs.cc/book_2290759.html
- http://www.ickdjs.cc/book_878635.html
- http://www.ickdjs.cc/book_2450522.html
- http://www.ickdjs.cc/book_3479038.html
- http://www.ickdjs.cc/book_2849375.html
- http://www.ickdjs.cc/book_2485509.html
- http://www.ickdjs.cc/book_3226166.html
- http://www.ickdjs.cc/book_2851257.html
- http://www.ickdjs.cc/book_3044777.html
- http://www.ickdjs.cc/book_2962861.html